Shortest Paths Revisited 4/4 All-Pairs Shortest Paths

Lecture 07.09 by Marina Barsky

Johnson's algorithm

Results: All-Pairs Shortest Paths

Can we do better for generic (sparse) graphs?

Motivation

- APSP = n*SSSP
- n*Dijkstra's algorithm = O(nm log n) for sparse graphs: O(n² log n)

We want this complexity! But for general sparse graphs

- Idea: use n*Dijkstra for general graphs
- **Obstacle:** we need to get rid of negative edge costs

Johnson's algorithm

- Invoke Bellman-Ford SSSP once: O(nm)
- This will transform G into the graph with nonnegative edge weights

- Use n times Dijkstra: O(nm log n)
- Total running time: O(nm log n) For general graphs!

Reweighting technique which does not work

• Natural instinct: add max negative cost to the weight of each edge, making all edges non-negative

Reweighting technique which does not work

• Natural instinct: add max negative cost to the weight of each edge, making all edges non-negative

Reweighting technique which does not work

• However this does not preserve the original shortest paths!

Reweighting idea: vertex tokens

- Let G=(V,E) be a directed graph with general edge lengths (including negative)
- Fix a token p_v for each vertex $v \in V$ (any real number)
- Transform the cost c_e of every edge e=(u,v) to $c_e' = c_e + p_u p_v$

 Then the cost of any path P with original length L between two vertices s,t in G will be modified by exactly the same amount:

$$L' = L + p_u - p_v$$

$$L' = \sum_{all \ (u,v) \in P} [c_e + p_u - p_v]$$

The tokens of all intermediate nodes cancel themselves and leave only the tokens of the source and the destination vertices

• Thus the relative lengths of different paths between s and t remain the same

• Compute magical vertex tokens running SSSP Bellman-Ford algorithm once

Sample graph with negative edge lengths but without negative cycles

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G. Adding s will not change any shortest paths between original vertices of G, because s has no incoming edges (no path in the original graph can go through s)

Adding artificial source vertex s with edges of cost 0 to every vertex in G

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G
- Run Bellman-Ford and compute the costs of shortest paths from s to every other vertex

For each vertex: costs of singlesource shortest paths from s

For each vertex: costs of singlesource shortest paths from s

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G
- Run Bellman-Ford and compute the costs of shortest paths from s to every other vertex
- At the end set p_v = cost of the shortest path s~>v

These are your magical vertex tokens, which will make the cost of each edge non-negative!

Transforming edges

- p_v = cost of a shortest path s~>v
- For every edge e=(u,v) new cost $c_e' = c_e + p_u p_v$

Transformed graph with non-negative edge costs: ready to run n*Dijkstra to compute all-pair shortest paths

Johnson's algorithm

- Convert G(V,E) into G' by adding a new vertex s and n edges (s,v) of cost 0 to every vertex v ∈ V
- Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle halt]
- For each v ∈ V define p_v = cost of the shortest path s~>v in G'
 For each edge e=(u,v) ∈ E, define new cost c_e' = c_e + p_u p_v
- Run Dijkstra n times on G using new edge costs and starting from every vertex v ∈ V
- Extract the cost of the original path for each pair of vertices

easy? Think how

Reduction of the APSS problem for general graph to: 1 SSSP for general graphs + n SSSP for graphs with non-negative edge costs

Johnson's algorithm: running time

Convert G(V,E) into G' by adding a new vertex s and n edges (s,v) of cost 0 to every vertex v ∈ V

 $O(n^2)$

O(n)

- Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle halt]
- O(m) For each $v \in V$ define pv = cost of the shortest path $s \sim v$ in G' For each edge $e=(u,v) \in E$, define new cost $c_e' = c_e + p_u - p_v$
- **n***O(m log n) Run Dijkstra n times on G using new edge costs and starting from every vertex $v \in V$
 - Extract the cost of the original path for each pair of vertices

O(mn log n)

Much better than O(n³) Floyd-Warshall for sparse graphs

Johnson's algorithm: correctness

- We have already proven that using tokens of each vertex to reweigh edges does not change the order of paths u~>v: the shortest path remains the shortest even after reweighting: see <u>Reweighting technique slide</u>
- What remains is to prove the following:

Lemma

For every edge e=(u,v) of G, the reweighted edge cost $c_e' = c_e + p_u - p_v$ is non-negative.

Lemma

For every edge e=(u,v) of G, the reweighted edge cost $c_e' = c_e + p_u - p_v$ is non-negative.

Proof

- Let (u,v) be an arbitrary pair of vertices in G connected by an edge e u→v with cost c_e.
- By construction,

 $p_u = cost of a shortest path from s to u$

 $p_v = cost of a shortest path from s to v$

If p_u is the cost of a shortest path s~>u Then $p_u + c_e$ is the length of some path from s to v. This may be a shortest path from s to v, but there could be an even shorter path from s to v which does not pass through vertex u. Hence, $p_u + c_e \ge p_v$

• Therefore, $c_e' = c_e + p_u - p_v \ge 0$

