Shortest Paths Revisited 4/4 All-Pairs Shortest Paths
 Lecture 07.09 by Marina Barsky

Johnson's algorithm

Results: All-Pairs Shortest Paths

1. Graphs with non-negative edge costs:

For sparse graphs with non-negative edges: use n^{*} Dijkstra
n^{*} Dijkstra $(m \log n)=O(n m \log n)= \begin{cases}O\left(\mathbf{n}^{2} \log \mathbf{n}\right) & \text { if } m=O(n) \text { [sparse] } \\ O\left(n^{3} \log n\right) & \text { if } m=O\left(n^{2}\right) \text { [dense] }\end{cases}$
2. General graphs:
n^{*} Bellman-Ford $(n m)=O\left(n^{2} m\right)= \begin{cases}O\left(n^{3}\right) & \text { if } m=O(n) \text { [sparse] } \\ O\left(n^{4}\right) & \text { if } m=O\left(n^{2}\right) \text { [dense] }\end{cases}$
1*Floyd-Warshall:
$O\left(n^{3}\right)$

Can we do better for generic (sparse) graphs?

Motivation

- $\operatorname{APSP}=\mathrm{n} *$ SSSP
- n^{*} Dijkstra's algorithm $=O(n m \log n)$ for sparse graphs: $\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right) \quad$ We want this complexity! But for general sparse graphs
- Idea: use n*Dijkstra for general graphs
- Obstacle: we need to get rid of negative edge costs

Johnson's algorithm

- Invoke Bellman-Ford SSSP once: O(nm)
- Use n times Dijkstra: O(nm log n)
- Total running time: $\mathrm{O}(\mathrm{nm} \log \mathrm{n})$ For general graphs!

Reweighting technique which does not work

- Natural instinct: add max negative cost to the weight of each edge, making all edges non-negative

Most negative $m=-2$
Add $m=2$ to each cost

Add -m to each edge weight. After reweighting:
Shortest path $\mathrm{s} \sim>\mathrm{t}$ is $\mathrm{s}-\mathrm{t}$!

Reweighting technique which does not work

- Natural instinct: add max negative cost to the weight of each edge, making all edges non-negative

Reweighting technique which does not work

- However this does not preserve the original shortest paths!

Reweighting idea: vertex tokens

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed graph with general edge lengths (including negative)
- Fix a token p_{v} for each vertex $v \in V$ (any real number)
- Transform the cost c_{e} of every edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ to $\mathrm{c}_{\mathrm{e}}{ }^{\prime}=\mathrm{c}_{\mathrm{e}}+\mathrm{p}_{\mathrm{u}}-\mathrm{p}_{\mathrm{v}}$

$$
\mathrm{c}_{\mathrm{e}}{ }^{\prime}=2+(-4)-(-3)=1
$$

- Then the cost of any path P with original length L between two vertices s, t in G will be modified by exactly the same amount:

$$
\begin{aligned}
& \mathrm{L}^{\prime}=\mathrm{L}+\mathrm{p}_{\mathrm{u}}-\mathrm{p}_{\mathrm{v}} \\
& L^{\prime}=\sum_{\text {all }(u, v) \in P}\left[c_{e}+p_{u}-p_{v}\right]
\end{aligned}
$$

The tokens of all intermediate nodes cancel themselves and leave only the tokens of the source and the destination vertices

- Thus the relative lengths of different paths between s and t remain the same

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once

Sample graph with negative edge lengths but without negative cycles

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G. Adding s will not change any shortest paths between original vertices of G, because s has no incoming edges (no path in the original graph can go through s)

Adding artificial source vertex s with edges of cost 0 to every vertex in G

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G
- Run Bellman-Ford and compute the costs of shortest paths from s to every other vertex

For each vertex: costs of singlesource shortest paths from s

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G
- Run Bellman-Ford and compute the costs of shortest paths from s to every other vertex
- At the end - set $p_{v}=$ cost of the shortest path $\mathrm{s}^{\sim}>\mathrm{V}$

These are your magical vertex tokens, which will make the cost of each edge non-negative!

For each vertex: costs of singlesource shortest paths from s

Transforming edges

- $p_{v}=$ cost of a shortest path $s^{\sim}>v$
- For every edge $e=(u, v)$ new cost $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$

Transformed graph with non-negative edge costs: ready to run n^{*} Dijkstra to compute all-pair shortest paths

Johnson's algorithm

- Convert $\mathrm{G}(\mathrm{V}, \mathrm{E})$ into G^{\prime} by adding a new vertex s and n edges (s, v) of cost 0 to every vertex $\mathrm{v} \in \mathrm{V}$
- Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle - halt]
- For each $v \in V$ define $p_{v}=$ cost of the shortest path $s \sim>v$ in G^{\prime} For each edge $e=(u, v) \in E$, define new $\operatorname{cost} c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$
- Run Dijkstra n times on G using new edge costs and starting from every vertex $\mathrm{v} \in \mathrm{V}$
- Extract the cost of the original path for each pair of vertices

Reduction of the APSS problem for general graph to: 1 SSSP for general graphs +n SSSP for graphs with non-negative edge costs

Johnson's algorithm: running time

$\mathrm{O}(\mathrm{n}) \quad$ - Convert $\mathrm{G}(\mathrm{V}, \mathrm{E})$ into G^{\prime} by adding a new vertex s and n edges (s, v) of cost 0 to every vertex $v \in \mathrm{~V}$
$\mathrm{O}(\mathrm{nm})$ Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle - halt]
$\mathrm{O}(\mathrm{m}) \quad$ For each $\mathrm{v} \in \mathrm{V}$ define $\mathrm{pv}=$ cost of the shortest path $\mathrm{s} \sim_{\sim} \mathrm{v}$ in G^{\prime} For each edge $e=(u, v) \in E$, define new $\operatorname{cost} c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$

```
\(n^{*} O(m \log n)\)
```

- Run Dijkstra n times on G using new edge costs and starting from every vertex $\mathrm{v} \in \mathrm{V}$

$\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Extract the cost of the original path for each pair of vertices

$O(m n \log n)$

Much better than $\mathrm{O}\left(\mathrm{n}^{3}\right)$ Floyd-Warshall for sparse graphs

Johnson's algorithm: correctness

- We have already proven that using tokens of each vertex to reweigh edges does not change the order of paths $u \sim>v$: the shortest path remains the shortest even after reweighting: see Reweighting technique slide
- What remains is to prove the following:

Lemma

For every edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ of G , the reweighted edge cost $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$ is non-negative.

Lemma

For every edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ of G , the reweighted edge cost $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$ is non-negative.

Proof

- Let (u, v) be an arbitrary pair of vertices in G connected by an edge e $u \rightarrow v$ with $\operatorname{cost} C_{e}$.
- By construction,
$p_{u}=$ cost of a shortest path from s to u
$p_{v}=$ cost of a shortest path from s to v

If p_{u} is the cost of a shortest path $s^{\sim}>u$
Then $p_{u}+c_{e}$ is the length of some path from s to v. This may be a shortest path from s to v, but there could be an even shorter path from s to v which does not pass through vertex u. Hence, $p_{u}+c_{e} \geq p_{v}$

- Therefore, $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v} \geq 0$

