
1

Shortest Paths Revisited 4/4
All-Pairs Shortest Paths

Lecture 07.09 by Marina Barsky

Johnson’s algorithm

Results: All-Pairs Shortest Paths

1. Graphs with non-negative edge costs:

O(n2 log n) if m=O(n) [sparse]

O(n3 log n) if m =O(n2) [dense]

2. General graphs:

O(n3) if m=O(n) [sparse]

O(n4) if m=O(n2) [dense]

1*Floyd-Warshall: O(n3)

For sparse graphs

with non-negative

edges: use n*Dijkstra

n*Dijkstra (m log n) = O(nm log n) =

n*Bellman-Ford (nm) = O(n2m) =

Can we do better for generic (sparse) graphs?

Motivation

● APSP = n*SSSP

● n*Dijkstra’s algorithm = O(nm log n)

for sparse graphs: O(n2 log n)

● Idea: use n*Dijkstra for general graphs

● Obstacle: we need to get rid of negative edge costs

Johnson’s algorithm
● Invoke Bellman-Ford SSSP once: O(nm)

● Use n times Dijkstra: O(nm log n)

● Total running time: O(nm log n)

This will transform G

into the graph with non-

negative edge weights

For general graphs!

We want this complexity!

But for general sparse graphs

Reweighting technique which does not work

● Natural instinct: add max negative cost to the weight of each edge, making all

edges non-negative

v

t

s

3

1 -2

-1

51

v

t

s

5

3 0

1

73

Most negative m=-2

Add m=2 to each cost

Add -m to each edge weight.

After reweighting:

Shortest path s~>t is s-t!

Reweighting technique which does not work

● Natural instinct: add max negative cost to the weight of each edge, making all

edges non-negative

v

t

s

3

1 -2

-1

51

v

t

s

5

3 0

1

73

Add m=2 to each cost

New graph after reweighting

Original graph

Reweighting technique which does not work

● However this does not preserve the original shortest paths!

v

t

s

3

1 -2

-1

51

v

t

s

5

3 0

1

73

Before reweighting:

Shortest path s~>t is s-v-t

After reweighting:

Shortest path s~>t is s-t!

Reweighting idea: vertex tokens

● Let G=(V,E) be a directed graph with general edge lengths (including

negative)

● Fix a token pv for each vertex v ∈ V (any real number)

● Transform the cost ce of every edge e=(u,v) to ce' = ce + pu – pv

vu
ce=2

pu=-4 pv=-3

ce'= 2 +(-4) – (-3) = 1

● Then the cost of any path P with original length L between two vertices s,t in

G will be modified by exactly the same amount:

L' = L + pu – pv

● Thus the relative lengths of different paths between s and t remain the same

𝐿′ = ෍

𝑎𝑙𝑙 𝑢,𝑣 𝜖 𝑃

[𝑐𝑒 + 𝑝𝑢 − 𝑝𝑣]
The tokens of all intermediate nodes cancel

themselves and leave only the tokens of the

source and the destination vertices

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

Sample graph with negative edge

lengths but without negative cycles

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

● Add artificial source vertex s which

has an outgoing edge of cost 0 to

every vertex in G. Adding s will not

change any shortest paths between

original vertices of G, because s has

no incoming edges (no path in the

original graph can go through s)

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

Adding artificial source vertex s with

edges of cost 0 to every vertex in G

0

0

0

0

0

0

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

● Add artificial source vertex s which

has an outgoing edge of cost 0 to

every vertex in G

● Run Bellman-Ford and compute the

costs of shortest paths from s to

every other vertex

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

For each vertex: costs of single-

source shortest paths from s

0

0

0

0

0

0

0 -2

-3

-6-1

0

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

● Add artificial source vertex s which

has an outgoing edge of cost 0 to

every vertex in G

● Run Bellman-Ford and compute the

costs of shortest paths from s to

every other vertex

● At the end - set pv = cost of the

shortest path s~>v

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

For each vertex: costs of single-

source shortest paths from s

0

0

0

0

0

0

0 -2

-3

-6-1

0
These are your magical vertex

tokens, which will make the cost of

each edge non-negative!

Transforming edges

● pv = cost of a shortest path s~>v

● For every edge e=(u,v) new cost ce' = ce + pu – pv

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

Transformed graph with non-negative edge costs:

ready to run n*Dijkstra to compute all-pair shortest paths

0 -2

-3

-6-1

0

c

y

ba

x

0

1

0

2

0

0

z

2

Johnson’s algorithm

● Convert G(V,E) into G' by adding a new vertex s and n edges (s,v) of cost 0 to

every vertex v ∈ V

● Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle – halt]

● For each v ∈ V define pv = cost of the shortest path s~>v in G’

For each edge e=(u,v) ∈ E, define new cost ce' = ce + pu – pv

● Run Dijkstra n times on G using new edge costs and starting from every

vertex v ∈ V

● Extract the cost of the original path for each pair of vertices

Reduction of the APSS problem for general graph to:

1 SSSP for general graphs + n SSSP for graphs with non-negative edge costs

easy?

Think how

Johnson’s algorithm: running time

● Convert G(V,E) into G' by adding a new vertex s and n edges (s,v)

of cost 0 to every vertex v ∈ V

● Run Bellman-Ford (G' with source s) [if it reports a negative-cost

cycle – halt]

● For each v ∈ V define pv = cost of the shortest path s~>v in G'

For each edge e=(u,v) ∈ E, define new cost ce' = ce + pu – pv

● Run Dijkstra n times on G using new edge costs and starting from

every vertex v ∈ V

● Extract the cost of the original path for each pair of vertices

O(n)

O(nm)

O(m)

n*O(m log n)

O(n2)

O(mn log n)

Much better than O(n3) Floyd-Warshall for sparse graphs

Johnson’s algorithm: correctness

● We have already proven that using tokens of each vertex to reweigh edges

does not change the order of paths u~>v: the shortest path remains the

shortest even after reweighting: see Reweighting technique slide

● What remains is to prove the following:

Lemma

For every edge e=(u,v) of G, the reweighted edge cost

ce' = ce + pu – pv is non-negative.

Proof

● Let (u,v) be an arbitrary pair of vertices in G connected by

an edge e u→v with cost ce.

● By construction,

pu = cost of a shortest path from s to u

pv = cost of a shortest path from s to v

If pu is the cost of a shortest path s~>u

Then pu + ce is the length of some path from s to v. This may

be a shortest path from s to v, but there could be an even

shorter path from s to v which does not pass through vertex u.

Hence, pu + ce ≥ pv

● Therefore, ce' = ce + pu – pv ≥ 0

Lemma

For every edge e=(u,v) of G, the reweighted edge cost

ce' = ce + pu – pv is non-negative.

u v
ce

pu pv

